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Continuous vacua in bilinear soliton equations 
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Abstract We discuss the freedom in the background field (vacuum) on top of which the 
solitons are built. If the Hirota bilinear form of a soliton equation is given by A(D,)G.  F = 0, 
B(D.) (F.  F - G ,  G )  = 0, where both A and B are even polynamials in their Mliables, then 
there can be a continuum of vacua, parametrized by a vacuum angle cp., The ramifications of 
this freedom for the COllStNCtiOn of one- and No-soliton solutions are discussed. We find, for 
example. that once the angle cp is fixed and we choose U = tan-' GJF as the physical quanti@, 
then there are four different solitons (or kinks) connecting the vacuum angles +cp. ~ i nJ2 
(where n is the defined modulo). 'The most interesting result is the existence of a 'ghost' soliton; 
goes over to the vacuum but interacts with ' n o r "  solitons by giving them a finite phase shift. 

1. Introduction 

The existence of multisoliton solutious has been considered as a very strong indication of 
the complete integrability of nonlinear evolution equations. The main tool for this was 
developed by Hirota (1971), who proposed a bilinear formalism based on the observation 
that, if expressed in the correct variables, soliton solutions are just polynomials in 
exponentiali [I]. Indeed, if we start from the solitary wave solution 

k 3 - p = 0  
k2 12 

[cosh((kx - pt)/2)J2 
U =  

of the KdV equation 

U: - ~ U U ,  + uxIX = 0 (2) 

and then introduce a new dependent variable F by U = 23: log F ,  we simply obtain 
F = 1 +ek-P'. 

The KdV equation itself can be cast in the bilinear form using the new variable F .  From 
the potential form of (2), which is ut - uxz + urxx = 0, where U, = U, we find that 

F F : + F F ~ ~ ~ x - 4 F ~ F ~ , x + 3 F ~ , 2 = 0  (3) 

and using Hirota's D operators defined through 

qop. .. F .  G = (a, - a;,"(a, - a;)b... F ( X ,  t ,  .. .)G(x', t', . . . ) ixra,tf  =,,,.. (4) 
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we can write (3) as 

(0," + D,D,)F. F = 0. (5) 

Expressed in this new dependent variable F ,  the multisoliton solutions of the KdV 

(i) zero soliton (vacuum): F = 1; 
(ii) one soliton: F = 1 +en; 
(iii) two solitons: F = 1 +en1 + eR1 + Alzenrin2 with A12 = kl - kz/(kl + kz); 
(iv) three solitons: F = 1 + e"' + en2 + e'Js + Alze"ltq' + A13e'JIt43 + A~ge'l"+n3 + 

equation can be systematically constructed (with q = kx - p t ) :  

AlzA13"e"'+'I~l+''3, 
etc. 

We remark that the threesoliton solution does not contain any new free parameters, i.e. 
once Aij is fixed at the two-soliton level the parameters of the three-(and higher) soliton 
solutions are fixed. Thus, for these higher-order solutions to exist, it is necessary for certain 
compatibility conditions to be satisfied. 

Returning to (5). we emphasize. that there exists a solution corresponding to a 'vacuum', 
i.e. the absence of solitons. One can see that F = constant # 0 is a solution which (due to 
bilinearity) can be normalized to F = 1. Thus, the vacuum in the case of KdV is uniquely 
defined. 

However, the vacuum solution is not always unique. In the following, we will show that 
for certain multicomponent bilinear equations there is a continuum of vacua which cannot 
be scaled away. In this case, the solitons turn out to interpolate between different vacua 
and there is one instance where the soliton is a 'ghost': it is only visible in interactions 
with other solitons. This multiplicity of vacua also puts extIa constraints on the existence 
of soliton solutions and, thus, on the integrability of the equation. 

2. Continuous vacua for two-component bilinear equations 

Bilinear equations can be classified according to the number of dependent functions one has 
to introduce in order to be able to write them in Hirota's form. Following the. analysis in 
[Z], we concentrate on G o  generic classes of two-component bilinear equations which can 
be written as 

A(D,)G. F = 0 I B(D,)G. F = 0 

where A and B are, respectively, the even and odd polynomials in the D operator (the 
modified-KdV family) and 

A(D,)(F. F - G .  G) = 0 I B(D,)F. G = 0 (7) 

where A and B are both even (the sine-Gordon family). 
The even-odd case is 'standard' in that only the usual vacua exist. We can put F = s, 

G = c, but due to bilinearity we can scale this to F = 1, G = 1 or F = 1, G = 0 or 
F = 0, G = 1 so that no continuous parameters remain. 

In this paper we focus on the even-even case (7). The sinfficrdon equation is the 
simplest and best known member of this family, corresponding to A = DxDt,  B = DID, - 1 
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131. If we use the standard method of nonlinearization and put F = e" cos U, G =.e" sin U 
in (7), with these A and B,  we get 

and, eliminating the field U, we get the sine-Gordon equation for U = 4u: 

U,, = sin U. (9) 

Let us now return to the general case and look for the zero-soliton solution. Two types 
of standard vacua can readily be found. If A(0) = 0, B(0) # 0 then G = 0, F = 1 and 
F = 0, G = 1 are the only possible vacua. Also, if A(0) # 0, B(0) = 0 we must take 
F = G = 1 or F = -G = 1. Note that if neither A(0) nor B(0) vanish then there are no 
simple zero-soliton solutions at all. 

A novel possibility exists if both A(0) and B(0) vanish in (7). Then if F and G are 
both constants, one gets a vacuum solution, whatever their ratio. We can use a symmetric 
parametrization of the continuous vacuum solution through 

F = c o s @  G=s in@ (10) 

where @ is a free parameter. 
The construction of a one-soliton solution on top of one of the standard vacua is 

straightforward and has been discussed, for example, in [ZJ. The question we wiIl now 
address is whether we can find one-soliton solutions on top of the new vacuum (10). Let 
us start with the ansatz 

F = c + C e q  G = s + S e q  (11) 

where c = cos@, s = sin@ and q = kx - p t  +constant. Substituting into (7), we obtain 
the following conditions: 

B@)(sC + cS) = 0 A@)(cC - sS) = 0 (12) 

where p = (k,  p ) .  Three cases can be distinguished, corresponding to three dfierent types 
of solitons: 

(or) A@) = 0 and B(p)  # 0, then C = sM, S = cM for some constant M .  This 
constant can be absorbed into the constant in so that 

F = c(1 +eS) G = s ( l  -eq). (13) 

@) A@) # 0 and B(p)  = 0, then 

F=c+se"  G = s + c e n .  (14) 

( y )  A@) = 0 and B(p)  = 0, then there is, at this level, no condition on C and S and 
the one-soliton solution seems to be arbitrary. 

A typical situation where a y-type soliton exists is when the Hmta polynomials A 
and B have a common factor U: A = UV, B = UW and thus the dispersion manifold 
common to both A and B contains U@) = 0. Moreover, in many cases (in particular for 
known integrable even-even systems), U is linear, i.e. U@) = X .p .  This will have further 
implications for the two-soliton solution as we shall see in the next section. 
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3. Constraints from the existence of two-soliton solutions 

In addition to the continuous paramehization of the vacuum, there is a further discrete 
ambiguity. We can observe this from (13). (14) when we look at the physical quantity 
LI = tan-' G/F it has different (constant) values at q + ~ C W ,  which suggests different 
vacua there. This will be discussed further in section 5, but before doing that let us see 
what the formal requirement for the existence of a two-soliton solution yields. 

Let us start by combining solutions of the types (I and p .  First, for (I f a  (which means 
that the dispersion relations are A ( p l )  = A(p2) = 0 for both of the individual solitons), the 
ansatz for F and G can be written as 

This implies, in particular, a condition for the existence of two-soliton solutions. On the 
manifold A@')  = A @ z )  = 0 we must have 

A ( ~ I + P z ) B @ I  -pz )+A(p i  - P z ) B h  +pz)=O.  (17) 

This condition reflects the fact that, generically, even-even bilinear equations do not have 
two-soliton solutions. 

The p + p solution leads to analagous results 

F = c + se"' + se"' - cMe"l+"l 

G = s + ce"' + ceq2 - sMe'"+" 

with M given by (16) and (17) as the existence condition (but now, however, on a different 
dispersion manifold, namely B @ I )  = B(pz)  = 0). 

The case a + p is treated in a similar way. We start from 

F = c + ce"' + se" + 
G = s - se" + ce"= + Le""" 

on A@,) = E&) = 0 (or B(pl)  = A b " )  = 0) and find K = -sM, L = cM with (16) 
and (17) as the compatibility condition (on yet a different dispersion manifold). Thus for 
standard-type solitons (I and p ,  the construction of two-soliton solutions is straightforward 
and leads to condition (17) on a suitable manifold. 

The cases where a y-type soliton is involved are more interesting. Let us combine 
one a-type soliton with a y-type soliton. The dispersion manifold in this case is 
( A b d  = 0) n ( A b z )  0) or ( A b 1 1  = 0) n (B@I) = 0) n (A@z) = 0). 
Let us choose the first case and write the solution as 

0) n (Bh~z) 

F = c+ce"' + Ce" + Ke"""' 

G = s -se"' + Se" + Le"'+"2. 
(20) 

We readily find that K = CM, L = -SM, with the following three possibilities for C, S 
and M, namely: 
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(i) Type yl:  C = c ,  S = s  and 

~ A b i  +pz). 
= - A b 1  - P d  

(ii) Qpe yz: C = s, s = -C and 

(iii) Type y,: C and S are free and M is given by (16) and therefore (17) must be 
satisfied again on the appropriate dispersion manifold. 
Similar conclusions can be reached in the ,3 + y case, mutatis mutandis. 

Let us finally consider the interaction of two y-type solitons. Here, the dispersion 
manifold is ( A b I )  = 0) n ( B ( p l )  = 0)  n (A(p2) = 0) r l  (B(p2) = 0).  The two-soliton 
solution can be written as 

For notational convenience, we introduce the quantities (0 and @ through 

K = s r p + c @  L = c ( ~ - s +  (22) 

and readily find 

provided that A(pl + pz) # 0 and B(p1 + p2) # 0. 
However, if the two y-type solitons are obtained for A = UV, B = UW through 

V(pl)  = U(p2) = 0, and, moreover, if U is linear, then both V(pl  in) = 0 and 
A(pi f pz) = B(pi f pz) = 0 as well. In that case, with F and G given by (21), one has 
A ( F .  F - G . G) = B F .  G = 0 for arbitrary Ci, Si, K and L, and (0 and @ are~still totally 
free at this stage. 

As we have seen above, the quantities Cj and Si (i = 1,Z) are, in general, fixed by 
the interaction of y-type solitons with a- and @-type solitons, except in the special case 
of y3 where (17) would also be satisfied on the appropriate dispersion manifold. Thus, if 
A ( p ~ + p z )  # 0 and B(p l+pz )  # 0 then the only possible values of Ci, Si, and consequently 
rp and @, are as follows. 

(a) y1 fn: Ci = CZ = c, SI = SZ = s  and 
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(c) y2 + yz: CI = CZ = s, SI = SZ = -c and 

In the exceptional case (iii) where C and S are free, the y-type soliton would remain 
completely free even at this stage. 

As the three- or more-soliton solutions exist only for integrable systems, we cannot 
continue the analysis for general A and B polynomials. The only known integrable cases 
for which y-type solitons exist at all do factorize with a linear U; therefore, only the study 
of the three-soliton solutions could determine the quantities ‘p and + which remain free 
at the two-solitun level. This staggered determinatipn of the N-soliton solutions from the 
study of the ( N  + 1)-soliton solution was first noted in our work [4] on ‘static’ solitons, i.e. 
precisely the case where the common factor U is just D:. 

4. Is there a free 7-type sofiton for integrable systems? 

The fact that the parameters of a y-type soliton may remain undetermined even at the level 
of two-soliton solutions raises questions about the nature of such a solution. That is, should 
we call this solution a ‘soliton’ or not. The point is that it is not generally true that any 
values of C and S in (11) define a soliton. For instance, let us assume that the common 
factor of A and B is just U = D,. Then, since U is a factor of both A and B it is easy to 
convince oneself that any time-independent F and G will satisfy the equations. 

However, not every timeindependent object can be called a time-independent soliton: 
there is the additional requirement that upon interaction with any moving object it should 
re-emerge unchanged, maybe with a shift in position. The condition for~the y-type object 
(defined above) to satisfy this criterion is that it reduces to y~ (C = c and S = s) or y2 

(C = s and S = -c), unless condition (17) happens to be satisfied on the appropriate 
dispersion manifold, in which case the y-type soliton i s  still free at this stage. Now we 
should note that, while (17) is satisfied on the a +a, a + ,3 and j3 + j3 manifolds for all the 
known integrable equations, it is not satisfied on the a + y or ,3 + y manifolds for those 
few known equations where y-type solitons exist. This means that the y-type solitons are 
in fact fixed at this stage for the integrable cases. 

From an analysis of the conditions for the existence of the two-soliton solutions we 
obtained condition (17) on various dispersion manifolds depending on the soliton solutions 
under consideration. This condition is a very strong one. To start with, it constitutes a 
first necessary condition for integrability. Thus, whenever the partial differential equation 
(PDE) under consideration has a Hirota form (7) that possesses a continuous vacuum (i.e. 
A(0) = B(0) = 0), condition (17) may serve as a first check for the integrability of the 
equation. 

To illustrate this, let us consider the even-even bilinear equation with Hirota polynomials 

If we impose condition (17) on A(pl) = A b )  = 0, we find the necessary condition 
a = b = 0. The same condition is obtained on the manifold A(pl) = 0, kz = 0 (from the 
first factor of B) .  On the other hand, if one wants to satisfy B@z) = 0 through the second 
factor, i.e. p z +  bkz = 0, then (17) is never satisfied, even for a = b = 0. In this last special 
case, and in this case only, however, (17) is nof needed for integrability, as for pz = 0, 
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a = b = 0 both A and B vanish and we have, in fact, a yl- or yz-type soliton. Finally, 
a = b = 0 is a necessary and sufficient condition for the existence of two-soliton solutions 
of all possible types (or, p, y ~ ,  yz). We have &us quickly obtained the only integrable 
subcase of (24) at the two-soliton level. If we use instead only the standard-type vacuum, 
we have to go to three-soliton solutions (and, in exceptional cases, even to four-soliton 
solutions) in order to restrict the values of a and b. 

Conversely, we could use (17) in order to derive the possible forms of the bilinear 
PDEs which would possess a two-soliton solution in the presence of a continuous vacuum. 
However, deriving the general solution of the functional equation (17) under the constraints 
defining the dispersion manifold seems to be a formidable task (in particular, because for 
some special values of the parameters the existence of a solution is not determined by 
(17), but by the j3-soliton being reduced to a y-type soliton, as in the case of (24) above). 
Moreover, in 151 we have used general arguments based on singularity analysis and derived 
all the possible bilinear even-even PDEs that could be candidates for integrable equations 
and, in the light of these results, finding the general solution of (17) does not seem to be 
necessary. In conclusion, (24) with a = b = 0 is the only integrable pair with a continuous 
vacuum (and A + B).  

Let us rewrite the integrable case U = b = 0 of (24) in nonlinear form. We first make 
a n/4 rotation in F ,  G space ( F  = f + g, G = f - g) and obtain 

Here. if f = g, then the equation reduces to Ito's equation for shallow water waves [6]; 
the present equation is therefore its generalization. If we put f = e" cos U, g = e" sin U ,  we 
obtain 

(26) 
uxzm + 6 ~ x 1 ~ z . x  + UYI = -1Uxxn + 6~zzu.rt + +I tan(2u) I vxr = uXf tan(2u). 

The It0 equation is the term in square brackets involving U. Note also that the second 
equation is the same as in the s inGordon equation (8). Our new equations (26) then 
represent the coupling of the Ito field U to another field U. The coupling is similar to that 
of the s inGordon,  but in this case we cannot eliminate either one of the fields, and we 
thus have a genuine two-component system. 

5. The physical vacuum and the solitons interplaling between them 

Let us now return to the question of the vacuum angle. We have already noted that, even 
when Q is fixed, there are, in fact, several 'physical' vacua, and that the soliton solutions 
connect them. The evidence of this is obtained when we recall that bilinear equations are 
invariant under a simultaneous ihange of phase. Thus, (11) can also be. written as 
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Figure 1. The time evolution of the 01 +@-soliton solution of (24) with n = h = 0 (the integrable 
case). The four different vacuum levels are clearly visible. (Far this equation the 0-soliton is 
x-independent.) 

so that the soliton seems to be built on top of the vacuum @ = C. 6 = S. 
Further information on the vacuum is obtained when we use the physical quantities. It 

is well known that F or G alone do not have physical meaning as they ‘blow up’ when 
q + 00. The typical physical variable is 

U = tan-’(G/F) (28) 

so let us see how the vacua look from the point of view of U. The starting vacuum (10) 
yields U = 6, and this value is also obtained from (1 1)  when q + -CO. When 7 + 00 we 
find that the limiting value is different for different solitons. 

a :  Q + -Q p :Q + (7112) - 6  

YI : Q + Q Y2 : Q + Q - ( x / 2 ) .  

The solitons do, therefore, connect different values of the vacuum. Note that, from the point 
of view of U, the vacuum angle is defined only by the modulo K. 

When we look at the two-soliton solutions exhibited in section 3, we observe that it is 
really this change in the angle that characterizes the soliton. For example, (19) connects 
vacuum angle 6 with Q - (n/2) and the intermediate vacuum angle is -9 or (n/2) - 6, 
depending on which order the a and p kinks appear (see figure 1). That is, the values of the 
soliton’s left-hand side and right-hand side vacuum angles may change during the interaction 
but the operation made on the vacuum angle will stay invariant and may be associated with 
the soliton. Figure 2 shows how the a-soliton interpolates between different vacua. 

Soliton yI is quite curious, because in isolated it goes over to the vacuum. It is therefore 
a kind of ‘ghost’ soliton and invisible when on its own. However, when it interacts with a 
normal soliton it manifests itself in an unambiguous way. Figure 3 shows the time evolution 
of an 01 + yt pair. In figure 3(a) we display the ‘physical’ field U. It describes a kink that 
propagates from left to right, and, as expected, the ‘ghost’ soliton is invisible but its effect 
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0 z 3 f Z E  
Figure 2. This figure shows how the a-soliton (13) interpolates different vacua. For figure (a) 
we have assumed that en in (13) is positive, for figure (b) that it is negative. 

is reflected in the phase shift of a. In figure 3(b), we display the field U showing both plane 
fields and their interaction. The situation is reminiscent of dromions where background 
ghost-like fields exist. They are also invisible in the physical variable but the effect of their 
interaction is clearly visible and creates local disturbances [7]. 

6. Conclusions 

To conclude, we remark that the (continuous) vacuum multiplicity is an interesting property 
of even-even bilinear equations which allows surprising phenomena to occur. One of the 
most remarkable is the existence of hidden solitons which appear only in interaction with 
'normal' solitons. For these systems, it tuns  out already that the existence of general 
two-soliton solutions can be used for investigating the integrability in a simple manner. 
Unfortunately, integrable systems having this property are quite rare and few examples are 
known to date. 
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I"/ 

Flgurr 3. Time evolution of the U + yt Soliton in terms of the variables U in ( 0 )  and U in (b).  
For t + +CO, only the U soliton is visible in the U variable; the y~ soliton manifests itself only 
at the point where the n soliton goes over it. Far variable U, both solitons are visible. 
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